
Trends in Scientific Discovery Engines

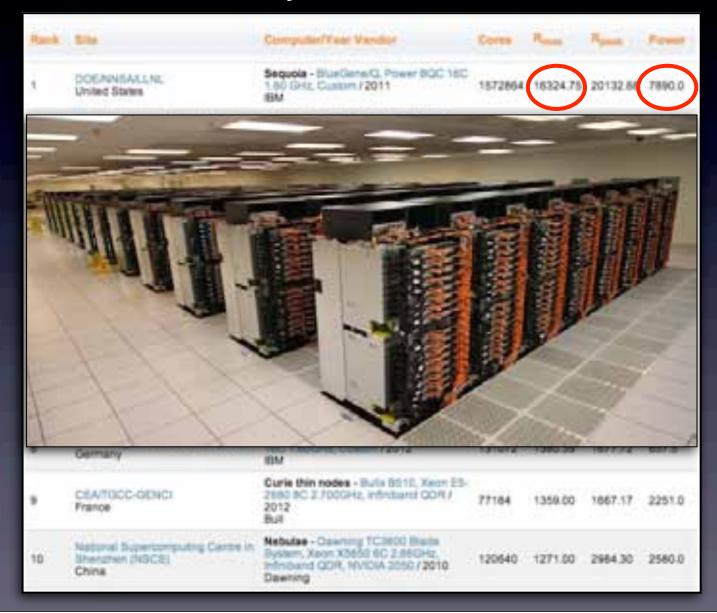
Mark Stalzer
Center for Advanced Computing Research
California Institute of Technology
stalzer@caltech.edu
www.cacr.caltech.edu

January 31, 2013

Drivers

- Simulations
 - ▶ Benchmark: LINPACK Benchmark (TOP500)
- Big Data
 - ▶ Benchmark: ? (This is a problem)
- Power
 - ► Tflops/KW (for Rmax): 2.14 #1, 2.07 Sequoia #2, 2.46 best Programability: Sequoia, Beacon, #1

Trends in Simulation Engines:


Exascale or Bust

(or computing without data)

Top 10 Supercomputers

June 2012

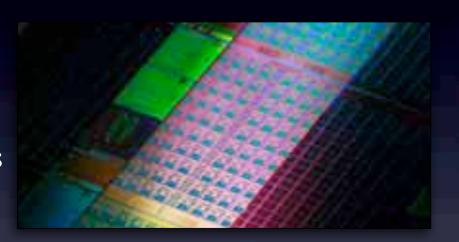
Socket Parallelism: TOP500 2002 vs. 2012

Optimized for dot products:

complex
$$s = 0$$
;

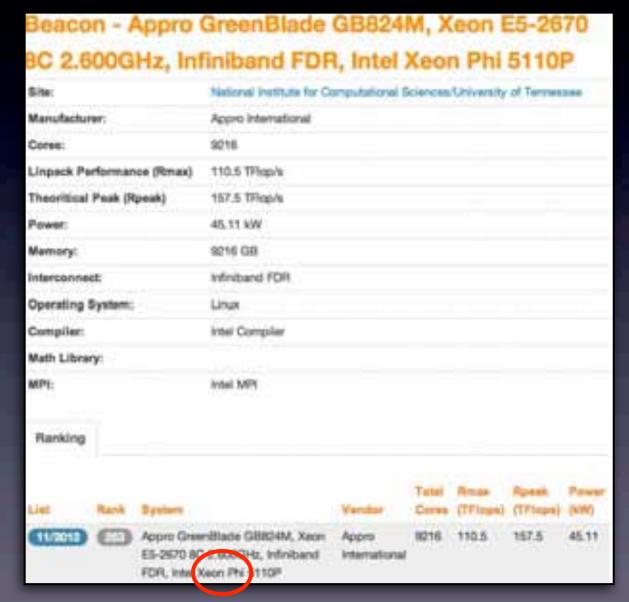
for (complex*
$$lp = xp + n$$
; $s += *xp++ * *yp++$; $xp < lp$);

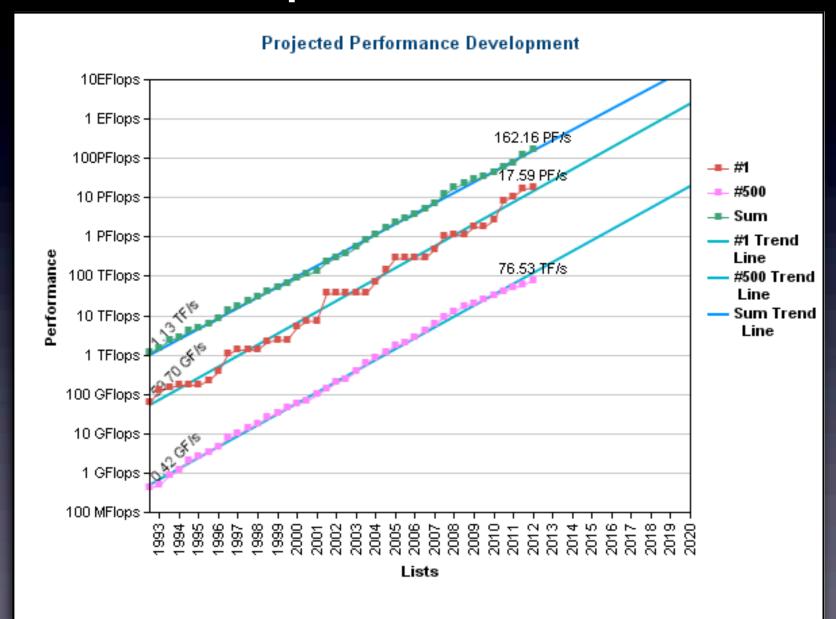
	ASCI White #2	Sequoia #1	GAIN
Rmax (Tflops)	7.226	16,325	2,260x
Processor	IBM Power 3	IBM BQC 16C	
Clock (Ghz)	0.375	1.6	4.27x
#Sockets	8,192	98,304	I2x
Socket Parallelism		64	64x (3,280)


Most of parallelism increase is on-socket, and getting "worse"...

Intel Xeon Phi

November 2012

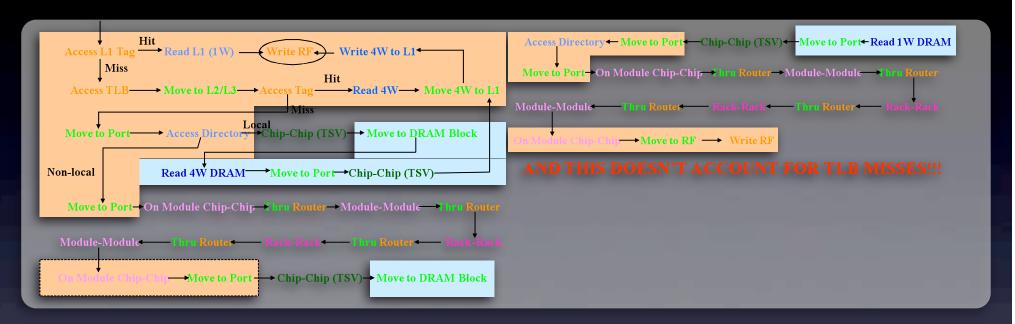

- 50+ IA64 cores (Pentium-like)
 - ▶ 8 (double) SIMD
 - ▶ 200+ hardware threads
 - ▶ Tflops per socket
- Will scale to O(1,000) threads ~3 yrs
 - Cache coherent in socket
 - ▶ ASCI White performance!
- Qualitatively different programming model
 - MPI between sockets
 - ▶ Massive **general** threading in a socket: must rewrite codes
- Example: Image processing parallelism



Beacon: Most Energy Efficient

Top 500 Trends

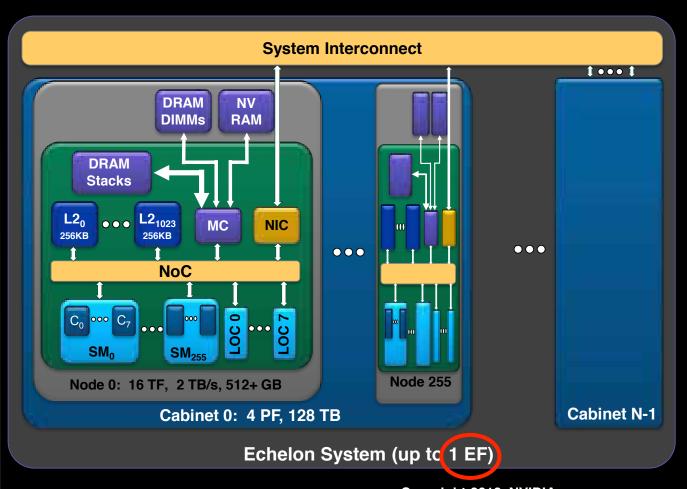
Current Exascale Construction: Intel Fab 42 (14nm and beyond)



2018 +Solvers and Extreme Parallelism "Elme" rest POWER **UQ** Optimizer Convergence Studies DQ INTRINSIC PARALLELISM ▼ 50% less LEAKS 10 per investina Solvers PROCESS+SHURNING 10,000 may mit Server Provvence). NODES+MPI Deep Pipelines 50°x sores 1,000x threads SOCICITY*+ Shallow Pipelines THREADING Single Instruction Madriple Date 1024 hire stam

Follow the Power

<u>Operation</u>	Energy (pJ/bit)
Register File Access	0.16
SRAM Access	0.23
DRAM Access	1
On-chip movement	0.0187
Thru Silicon Vias (TSV)	0.011
Chip-to-Board	2
Chip-to-optical	10
Router on-chip	2


<u>Step</u>	<u>Target</u>	рJ	#Occurrances	Total pJ	% of Total
Read Alphas	Remote	13,819	4	55,276	16.5%
Read pivot row	Remote	13,819	4	55,276	16.5%
Read 1st Y[i]	Local	1,380	88	121,400	36.3%
Read Other Y[i]s	L1	39	264	10,425	3.1%
Write Y's	L1	39	352	13,900	4.2%
Flush Y's	Local	891	88	78,380	23.4%
Total				334,656	
Ave per Flop				475	

In 2015, a flop will be ~10 pj: It takes ~50x energy just to move the bits!

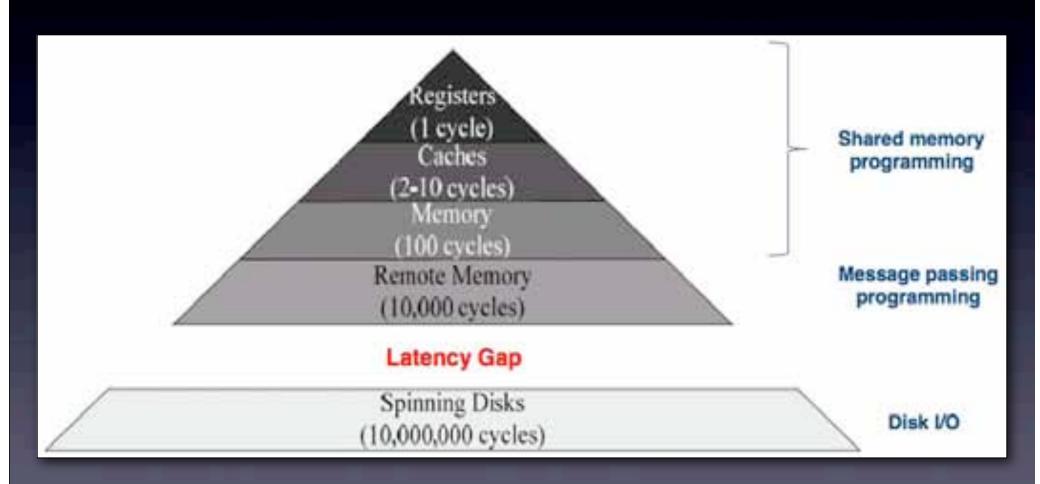
NVIDIA Echelon

2018 Echelon Compute Node & System

Key architectural features:

- Malleable memory hierarchy
- Hierarchical register files
- Hierarchical thread scheduling
- Place coherency/consistency
- Temporal SIMT & scalarization
- PGAS memory
- HW accelerated queues
- Active messages
- AMOs everywhere
- Collective engines
- Streamlined LOC/TOC interaction

Copyright 2012, NVIDIA



Trends in Data to Discovery Engines

(Computing with data, because the answer is not always 42)

Latency Gap

Several efforts at closing the latency gap using flash memories...

Amdahl-Balanced Blades

- Gene Amdahl's Laws for I/O & memory (1965, 2007):
 - ▶ A bit of seq. I/O per sec. per instruction per sec. (Amdahl #)
 - ▶ Mbytes / MIPS ~ I (Memory ratio)
 - ▶ One I/O operations per 50,000 instructions (IOPS ratio)
- Simulation codes may have an Amdahl # of 10⁻⁵; data intensive apps may need ~ I
- Szalay, Bell, Huang, Terzis, White (Hotpower-09):

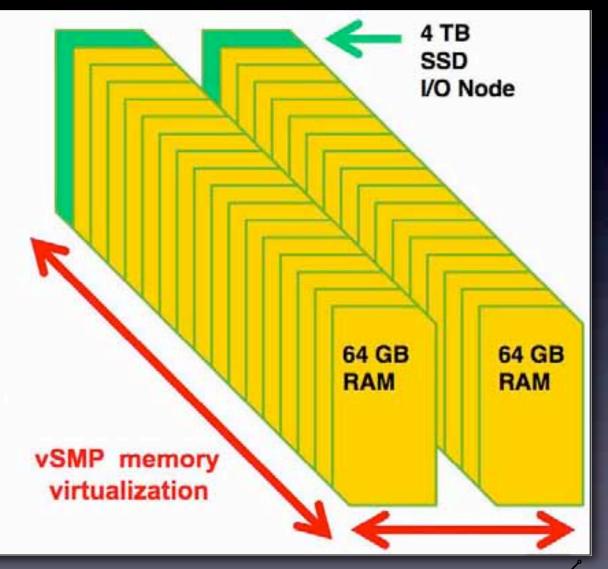
	CPU M	Mem Se	SeqIO	RandIO	Disk	Power	Cost	Relative	Amdahl numbers		
	[GHz]	[GB]	[GB/s]	[kIOPS]	[TB]	[W]	[\$]	Power	Seq	Mem	Rand
GrayWulf	21.3	24	1.500	6.0	22.5	1,150	19,253	1.000	0.56	1.13	0.014
ASUS	1.6	2	0.124	4.6	0.25	19	820	0.017	0.62	1.25	0.144
Intel	3.2	2	0.500	10.4	0.50	28	1,177	0.024	1.25	0.63	0.156
Zotac	3.2	4	0.500	10.4	0.50	30	1,189	0.026	1.25	1.25	0.163
AxiomTek	1.6	2	0.120	4.0	0.25	15	995	0.013	0.60	1.25	0.125
Alix 3C2	0.5	0.5	0.025	N/A	0.008	4	225	0.003	0.40	1.00	

Cyberbricks

- 36-node Amdahl cluster at 1,200 W total!
 - ▶ N330 dual core Atom, 16 GPU cores, 4 GB
- Aggregate disk space of ~43 TB
 - ▶ About I SSD I20 GB per core (~8 TB)
 - ▶ 35 TB of spinning disk
- Blazing I/O performance: 18 GB/s
- Amdahl # = I for under \$30 K
- Using the GPUs for data mining:
 - ▶ 6.4 B multidimensional regressions in 5 min over 1.2 TB
 - Ported RF module from R to C#/CUDA

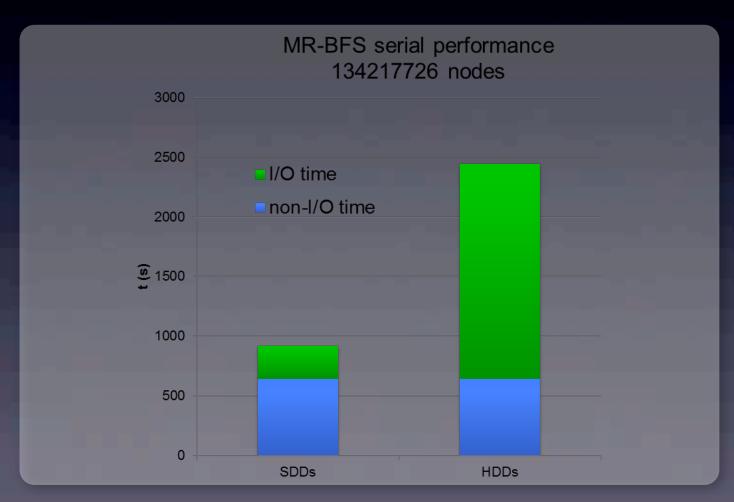
Gordon Supernode Architecture

32 Appro Extreme-X compute nodes


- Dual processor Intel Sandy Bridge
 - 64 GB

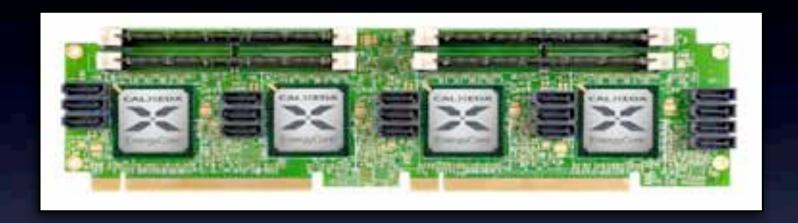
2 Appro Extreme-X IO nodes

- Intel SSD drives
 - 4 TB ea.
 - 560,000 IOPS


ScaleMP vSMP virtual shared memory

- 2 TB RAM aggregate
- 8 TB SSD aggregate

Full machine is 32 supernodes interconnected by dual-rail QDR IB in 3D torus. 🗞


Gordon BFS Performance

6.5x Improvement - Available now through XSEDE (www.xsede.org).

Calxeda/HP Moonshot

"The EnergyCore is a single chip with a Cortex-A9 ARM processor running between 1.1GHz and 1.4GHz. The chip includes 4MB of cache, an 80-Gigabit fabric switch and a management engine for power optimization. Servers with the chip, 4GB of memory and a large-capacity solid-state drive [SATA] draw 5 watts of power. Besides using a low-power ARM processor, Calxeda has cut down chip power consumption by integrating key server components."

- Agam Shah, Computerworld, Nov 11, 2011

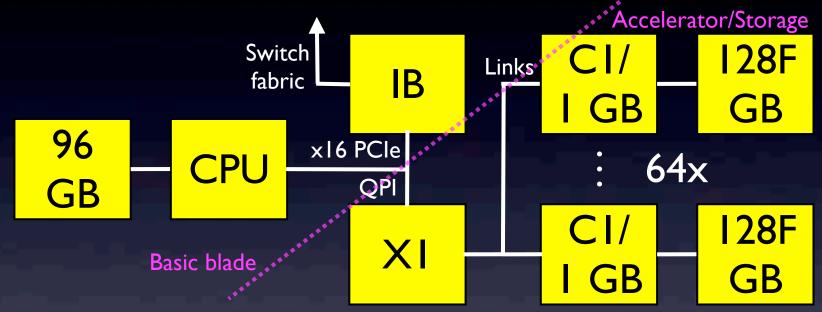
Cyberbricks and Gordon are real

(and 6-10x is great but still constrained by I/O architecture)

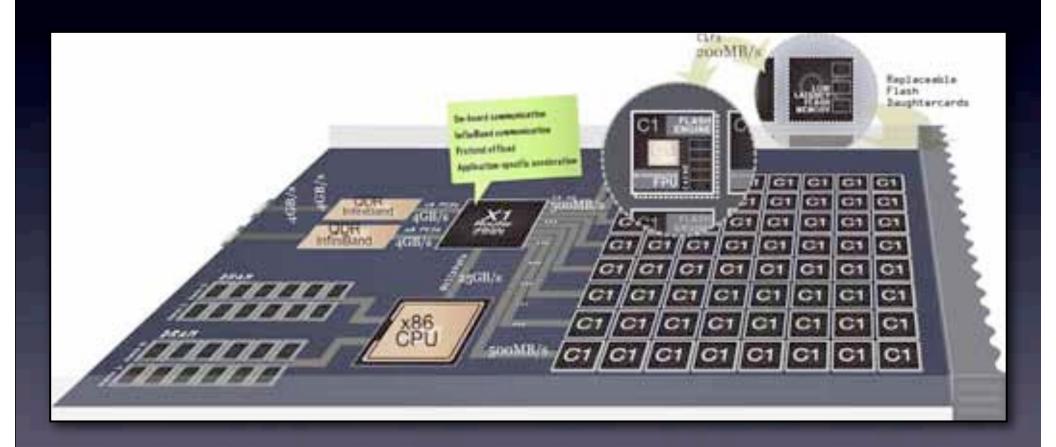
What if we do "make believe" computer architecture?

Power Miser Devices: Apple A5 to C1

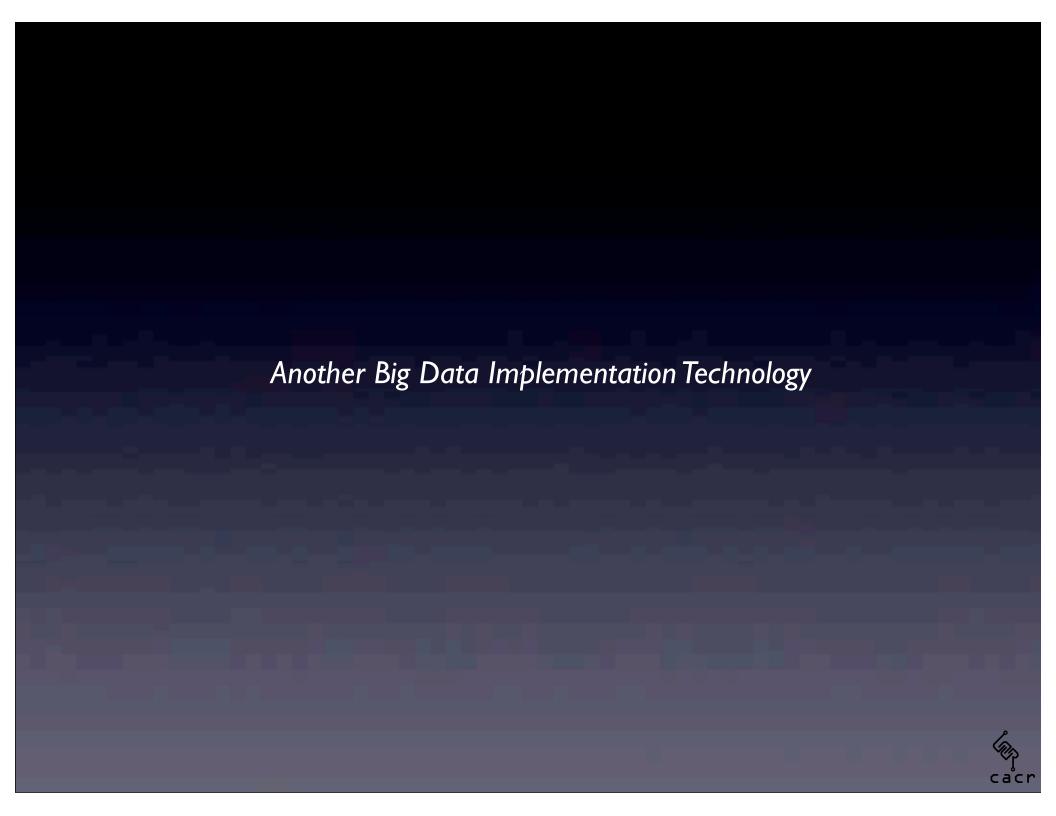
- ▶ SoC/PoP
- ► ARM/GPU/USB 2.0/Flash cntrl.
- ▶ 512 MB
- ▶ 10 Gflops? at IW?
- ▶ 64 GB NAND Flash



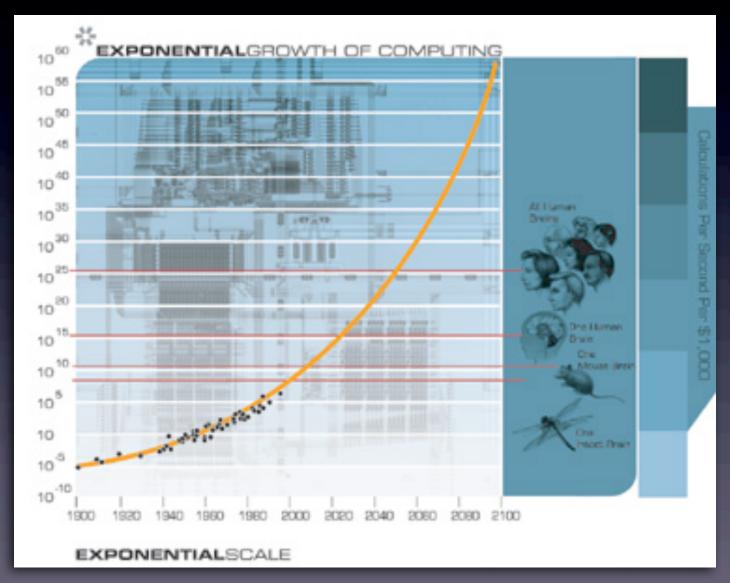
- ▶ I GB LDDR2 (64 bit wide) PoP
- ▶ 64 Gflops at 6 W + 2 W (I Ghz)
- ▶ 128 GB NAND Flash RAID
- ▶ All existing IP; need < I year</p>


A More Extreme Approach: FlashBlades

- "XI" is an FPGA switch for CI array & QPI to CPU & PCIe to IB
- The CPU orchestrates abstractions; to the CPU the array looks like:
 - ▶ A ~6 TB, 25 GB/s (burst), 50 us, || disk (file system, triple stores)
 - ▶ A ~4 TFlops accelerator (OpenCL with embedded triple stores)
- This all fits on a standard blade (2 sides) and uses commodity IP
 - ▶ Draws about 600 W and is 100x faster on disk operations

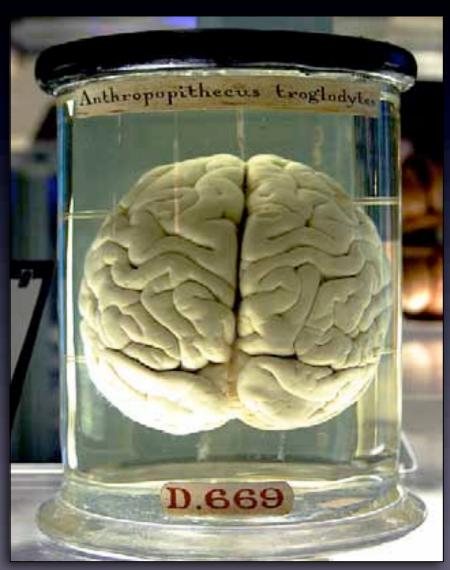


FlashBlade Packaging



Stalzer, Workshop on Architectures and Systems for Big Data (ASBD), June 2012

It Only Takes 10¹⁶ Ops (?)



A 10¹⁶ Flops Engine

- Quantity: Need about 200 servers (14 blades at 7U each)
 - ▶ Big IB switch fabric too (168 IB ports/rack)
 - ▶ Volume (need lots of air): 2,000 ft³
- Flash memory: ~17 PB
 - ▶ SDSC runs 18 PB of tape storage (1,000's of scientific data sets)
 - ▶ Constraint: no more than 1,000-2,000 writes/chip/day?
 - ▶ Data ingestion and reflective analysis by engine
 - ▶ Checkpoints in <10 s</p>
- About 10 Pflops at ~2 MW (does not include cooling)
- Cost unknown due to rapidly dropping flash costs, new packaging, and other economies of scale

Comparison to a Natural Big Data Engine

- Operations: I0 Pops (Ix)
- Memory: I PB (0.06x & forgets)
- Bandwidth: I PB/s? (0.5x I2x 30x)
- Packaging: 0.25 ft³ (8,000x)
- Power: 25 W (80,000x)!
- Where's the algorithm?

Some Clues from Biological Systems: Packaging

- VLSI has a few interconnect layers (many more process layers)
- Fractal topology: log(#nodes):log(#ext. edges) scaling with box size
- Data from Bassett et al., PLoS Computational Biology, Apr 2010:

Network	D _{Euclidean}	D _{Fractal}
VLSI	2	3.81+-0.64
C. elegans	3	4.42+-1.53
Brain (MRI)	3	4.12+-1.55

Concluding Remarks

Socket Archipelago (2018)

	Cluster	Socket
Parallelism	100,000	10,000+
Rel. Latency	~1,000	1 20 1 101

- Parallelism is becoming dramatically bimodal
 - MPI (or process) is essentially island level parallelism
 - ▶ Threads are tribe level parallelism and much much faster
 - What if all threads want to talk with another island at once?
- Must have very large L2 cache on socket
- Non-volatile storage must be integrated too (stacking)
- Analogy: cortical columns

Engine Software Architecture

Applications

LAPACK, SQL, PETSc, Root, etc., Data to Discovery?

Domain Abstractions & "Orchestration"

Numeric & Storage

Kernels

MPI &

Threads

Algorithms

Convergence &

Complexity?

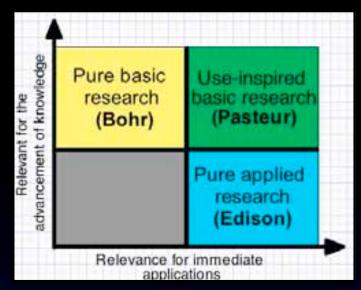
Communicating

Accelerated Processes

Semantics &

Tuning?

Distributed Substrate


FlashBlades?

Integrated Compute & Storage Networked Data Resources

Balance

Pasteur's Quadrant

- Computer Scientists:
 - ▶ Develop better abstractions to ease massively parallel programming
 - ▶ Improved algorithms
 - ▶ Manage asynchrony and (un)reliability
- Material Scientists:
 - Better insulators
 - ▶ Higher dimensional interconnects
 - ▶ New solid state storage technologies
 - ▶ What's the next S-curve (graphene?)
- Both:Think in terms of what can be done with a shrinking 10¹⁶ ops system (socket archipelago)

Working Group

(Hardware Trends in Computing)

- Computational requirements for scattering science
 - ▶ Data Volume, Velocity and Variety
 - Simulation workload
 - ▶ 5 yr trends and algorithmic scaling
- Cyberinfrastructure
 - Present capabilities
 - ▶ 5 yr trends
- Gaps?
 - General purpose or dedicated resources?

