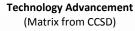
Mantid and SNS software development

Thomas Proffen tproffen@ornl.gov

Neutron Data Analysis and Visualization Division Neutron Science Directorate Oak Ridge National Laboratory



Neutron Data Analysis and Visualization Thomas Proffen, Director

Toni Sawyer, Division Admin. Assistant

Galen Shipman Data Systems Architect

Data Infrastructure

David Dillow Ross Miller Dale Stansberry

HPC Systems

Ryan Adamson Blake Caldwell John England Scott Koch Kevin Thatch

- (1) Matrix
- Joint with BSMD
- (3) Off-site contractor
- (4) Post-doc
- (5) On-site contractor

Neutron Data Analysis and Visualization Group

> Mark Hagen Group Leader

Diffraction Software

Peter Peterson Wenduo Zhou Vickie Lynch (1) Marat Mustyakimov (2) Dennis Mikkelson (3) Ruth Mikkelson (3)

Inelastic Software

Stuart Campbell Michael Reuter Andrei Savici (4) Jose Borreguero Russell Taylor (5)

Low Q Software

Mathieu Doucet Jean-Christophe Bilheux Shelly Ren

Data Operations (Matrix from RAD)

Karen White Manager

Instrument Data Acquisition and Controls

Steven Hartman Group Leader

Detector Acquisition

Steve Hicks Lloyd Clonts Vlad Sedov Dan Maierhafer

Data Translation

Jim Kohl

Madhan Sundaram Carol Tang Marie Yao Bogdan Vacaliu Pedro Vicente (3)

Charles Robert

Experiment Acquisition

Gayle Greene Mariano Ruiz-Rodriguez Tara Thompson

Accelerator Controls

Karen White Group Leader

Software Tools & Slow Controls

Kay Kasemir Xihui Chen Xiaosong Geng Derrick Williams

Protection Systems

Bill Stone Jason Stigal Melanie Smith

IT Support

John Quigley Richard Crompton Katie Palmer Robert Weiskopff (5)

System Integration

Steve Miller

12/14/2012

Neutron Data Life Cycle

- Neutron events
- Events from sample environment
- Other triggers

Reduction

- Corrected reduced data (histograms, S(Q,E), ..)
- Merging, reconstruction of data
- Instrument/technique dependent
- Need for 'real' time reduction

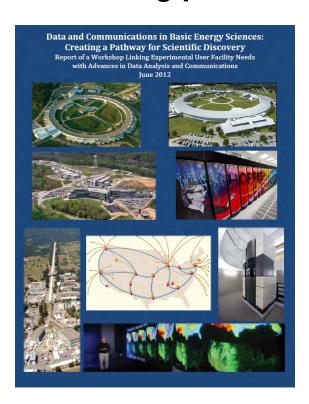
Analysis

- Multi dimensional fitting
- Advanced visualization
- Comparison to simulation / feedback
- Field dependent, large variety of approaches

Simulation Modeling

- Multitude of techniques (DFT, MD, ..)
- Advanced simulation of experiments
- 'Refinement' using experimental data
- Multiple experiments / probes

User Facility


 Variety of experiments, topics, methods and 'computer literacy' of users are significant challenge.

Creating a Pathway for Scientific Discovery

- Accelerating discovery in materials science
- Enhancing predictive capabilities

- Theory and analysis components should be integrated seamlessly within experimental workflow.
- Move analysis closer to experiment future possibility of experiment steering.
- Match data management access and capabilities with advancements in detectors and sources.

ADARA is enabling real-time feedback from experiment, analysis and computational steering

 The ADARA Project lets us stream data to computational resources and provide live feedback from experiment in real-time S(Q,E).



- Provides a high performance data backplane for reduction, analysis, and coupling with simulation forming the basis for future work to integrate experiment and simulation.
- Prototype running on HYSPEC instrument. Deployment to other beamlines in 2013/2014.

ORNL has launched the Center for Accelerating Materials Modeling (CAMM)

- The CAMM will integrate materials modeling/simulation (MD/DFT) directly into the chain for neutron scattering data analysis, offline and online (in near real time)
- Developing workflows for refinement, integration of MD codes, **neutron scattering corrections** ..
- The CAMM is working with ORNL's Materials Science and Technology Division to study coarse grained MD simulations of polymers PEO-AA (CNMS), ab-initio MD simulations for ferroelectrics/thermoelectrics

Example: *ab-initio* MD simulations for ferroelectrics/thermoelectrics. Focus on *width* of dispersions

The Center for Accelerating Materials Modeling (CAMM)

- Partnership between ORNL's Neutron Sciences, Physical Sciences and Computing and Computational Sciences Directorates
- ORNL SEED money and DOE funds provided to study force field refinement from quasi-elastic and inelastic neutron scattering data
- CAMM formed in response to BES proposal call for Predictive Theory and Modeling

Project Goals

Goals

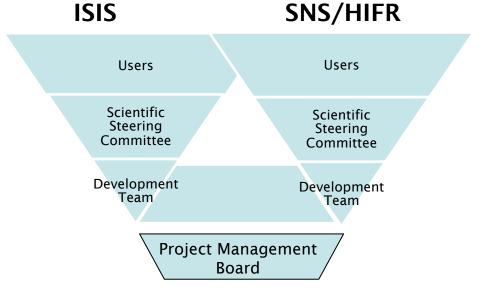
 Consolidate the data reduction/analysis software for neutron scattering without restricting the needs of the instrument scientists

Key requirement

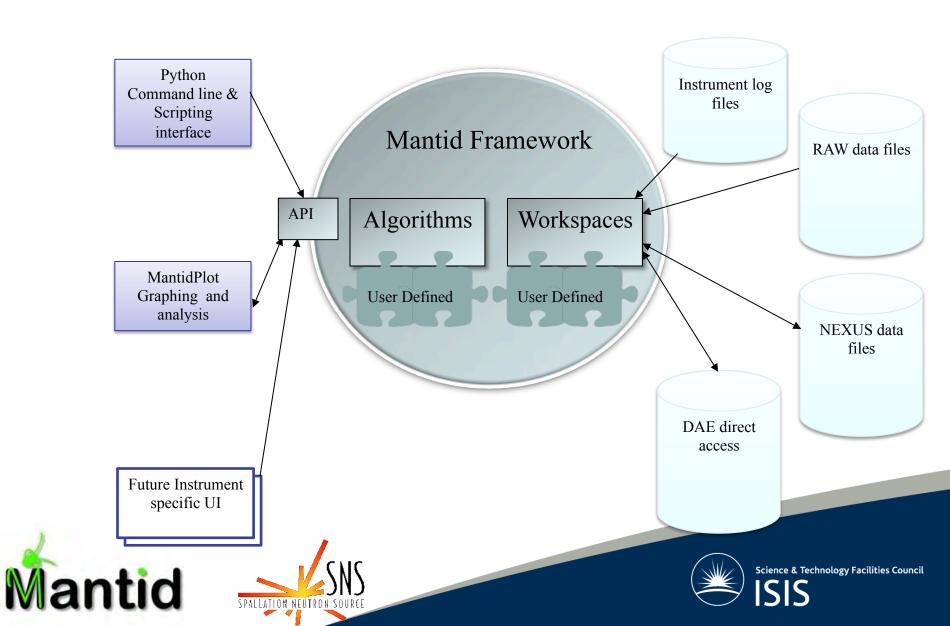
- Create a Data Analysis framework
 - not instrument or technique/dependent
- Cross-platform
 - · Windows, Linux, Mac
- Easily extensible
- Open source

A Selection of Risks

- Lasting engagement with a large number of stakeholders
- Design needs to support flexibility for future needs
- Technical single point of failure
- Development continuity across the team
- Larger development teams are less efficient
- Testing and deployment takes time & Active development can affect robustness


Lasting engagement with a large number of stakeholders

- ProjectOrganisation
- Active project sponsors
- Frequent releases
- Responsive to change



Architectural Design - Overview

Preventing single points of failure

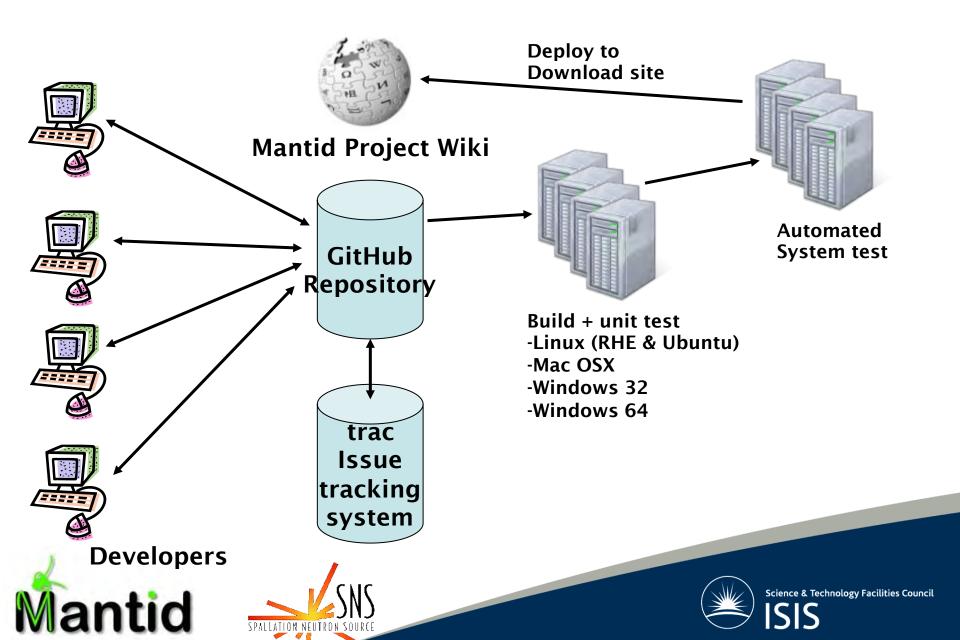
- No "Code Ownership"
 - Functionality protected via unit tests
- Mobile development talent
- Sub project teams to focus on significant developments
- Knowledge transfer
 - Daily & focused skype meetings
 - Code reviews
 - Architectural and detailed design documentation
 - Developer documentation
 - Annual developer meetings



Development continuity across the team

- Coding standards
 - Sensible
 - Agreed
- Shared code ownership
- Support within the team
 - Mentoring
 - Training
- Design and code reviews
- Developer meetings

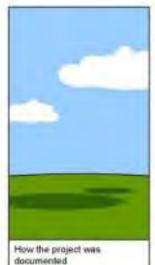
Larger development teams are less efficient


- Automate repetitive tasks
 - Saves time
 - Ensures they happen
- Optimize meeting time
 - Control attendees at meetings
 - Use the right technology
 - · Daily skype chat meetings
 - Ensure the right people talk together
- Use tools to prevent duplicated work and missed tasks
 - Development
 - Testing

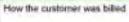
Continuous Integration Environment

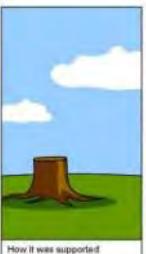
Thank you ...

How the Project Leader understood it.


How the Analyst designed it

How the Programmer wrote it




How the Business Consultant described it

What operations installed

